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Optical Interconnection

National
1,000 km

Global
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Optical Copper
Goal: Drive optical interconnection 
cheaper and faster!
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Integrated Optical Transceiver
7

Volume

Cost Integration
SiPh

• Silicon photonics is an ideal candidate for optical 
interconnections
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Integrated Optical Transceiver

• Parallel channels are key to scaling bandwidth at low cost

• Silicon photonics passive components have been intensively 

studied

• Hybrid III-V lasers are still the challenges 

Hybrid Laser

Hybrid Laser

Hybrid Laser

Modulator

Hybrid Laser

Modulator

Modulator

Modulator
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QD Lasers on Silicon

Bowers et. al., Selected Topics in 
Quantum Electronics, IEEE Journal 
of 17.2 (2011): 333-346.

Hybrid InP quantum well laser
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InAs QD Lasers

• Integration of InP based QW lasers on Si was the focus
• Quantum dot lasers are advantages with the high 

temperature stability and have drawn large attentions 
recently 
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MBE Growth of InAs QD

As pressure=8×10-6 Torr

TGrowth (GaAs)=600°C

TGrowth (InAs)=500°C

InAs QDs ~ 2.6 ML

III:V Ratio= 1:15

Growth rate (InAs)= 
0.1ML/s

Growth rate (GaAs)=1ML/s
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MBE Growth of InAs QD
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• Optimized InAs QDs with density of 8x1010 cm-2 is achieved 
• PL measurements are employed during the QD optimization
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Wafer Bonding

• Alignment Free
• No Dislocation and Threading Defaults
• Lower Cost
• Compatible with Si CMOS Integration

Dislocation in Si\GaAs 
interface 

GaAs die bonded to Si

• Low resistivity
• 0.1Ω/cm2

• Low Bonding 
Temperature 250 ℃

• Excellent thermal 
contact

12
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QD Laser on Si by Pd-Mediated 
Wafer Bonding

1) MBE growth 2) Deposit Pd

Pd

Si Pd
Si

Broad Area Bonded Laser Ridge Bonded Laser

Pd

4) Laser processing

Si

contacts

3) Flip-chip wafer bonding
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Characterizations of QD Lasers on Si
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• State-of-the-art hybrid InAs QD lasers on Silicon is achieved 
• Laser exhibit operation at 100˚C
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Butt-Joint Coupled Platform
15

• In butt-joint coupling platform, the edge emitting laser emission is 
directly aligned with the silicon waveguide input port

• The laser and silicon chips were mount on translation stages

• The alignment was achieved by maximizing the output power 

Si chip
QD laser
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Butt-Joint Coupled Platform
16

• QD laser is successfully couple in Si

• Si ring resonators can filter the comb laser emission

Light coupled from QDs Laser 

Si ring resonator on SOI Substrate

Light coupled from SOI waveguide 
to  Fiber
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Broadband Laser

The performance of an OCT 
system is largely determined 
by the broadband source

Optical Coherence 
Tomography (OCT) of a 
sarcoma (skin cancer)

"Ss-oct" by Pumpkinegan at en.wikipedia. https://commons.wikimedia.org/wiki/File:Ss-
oct.PNG#/media/File:Ss-oct.PNG
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QD Gain Region

Quantum Dots are a good candidate due to having:
- Emission from 1.0 to 1.3 µm
- Broadband ->        A-scan resolution  (ΔΖ=0.44•λ0

2/Δλ) 
- Long Coherence length  ->        B-scan resolution
- Grown on GaAs substrates for DBR integration

• Ha et. al., ELECTRONICS LETTERS Vol. 49 No. 19 pp. 1205–1206
• Thorlabs Inc. 
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Dip-free Broadband QDs

• Different QD structures can be grown together to eliminate 
the spectrum dip

24



Learning with Purpose

Dip-free Broadband QDs

• Different QD structures can be grown together to eliminate 
the spectrum dip
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Chirped QDs with InAlAs SRLs

• By using the novel QD structures, the ground and excited 
state emission can be separated in the mixed QD structures

26
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Chirped QDs with InAlAs SRLs

• By changing the SRL design, the GS and ES emission 
wavelengths can be tuned

27

7 Stack QD
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Chirped QDs with InAlAs SRLs

• By changing the SRL design, the GS and ES emission 
wavelengths can be tuned
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QD SLEDs/Gain Chip

• By changing the SRL design, the GS and ES emission 
wavelengths can be tuned

29
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Broadband QD External Cavity Laser
30

• QD external cavity laser is setup by using the wavelength selective 
diffraction grating
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Broadband QD External Cavity Laser
31

• QD external cavity laser is setup by using the wavelength selective 
diffraction grating
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Parity-time Symmetry in Quantum 
Mechanics

33

)()( * xVxV −=

PT Operators: PT Symmetry satisfies:

Non-broken PT phase

𝜃𝜃

Exceptional Point Broken PT phase

Condition:

�𝑃𝑃 ≡ ��̂�𝑝 → −�̂�𝑝
�𝑥𝑥 → −�𝑥𝑥

�𝑇𝑇 ≡ �
�̂�𝑝 → −�̂�𝑝
�𝑥𝑥 → +�𝑥𝑥
̂𝚤𝚤 → − ̂𝚤𝚤

�𝐻𝐻, �𝑃𝑃 �𝑇𝑇 = 0
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From Quantum Mechanics to Optics
34

Schrödinger Equation

Maxwell Equation in 2D waveguide

𝛻𝛻2𝜓𝜓 −
2𝑚𝑚𝑉𝑉 𝑥𝑥, 𝑦𝑦

ℏ2 𝜓𝜓 = −
2𝑚𝑚𝛦𝛦
ℏ2 𝜓𝜓

𝛻𝛻2𝜑𝜑 + 𝑘𝑘02𝜀𝜀 𝑥𝑥, 𝑦𝑦 𝜑𝜑 = 𝛽𝛽2𝜑𝜑
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PT Symmetric Optics
35
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PT Symmetric Optics
36

)()( * xx −= εε

X

)(xRε

)(xIε

Loss Gain
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What Can PT Symmetric Optics Do?
37

H.Hoedai, Science， Vol346 6212 (2010).

A。Regensburger et. al., Nature. 488, (2012).
L. Feng et. al., Science,  Vol 346, (2014).
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High Power Laser Application
38

Optical data storage

All images from google

Xerographic printing

Laser-induced nuclear fusionCommunication
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Mode Filtering
39

• Tapered Area to amplify fundamental mode alone
• Spatial filter to increase the loss of higher order modes
• Higher order modes occur in high pumping level

https://www.photonics.com/EDU/Handbook.aspx?AID=25099
S.Wolff. Et. al., OE, Vol 5, No 3 (1999)
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Model of Finite Element Method 
Simulation 

• Active region dimension: 
 Thickness=300 nm
 Width=60 µm

Active 
region 

Cross section

Loss Gain

Bottom Cladding

Top Cladding
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FEM Simulation
41

• Before EP, electric field oscillates
• After EP, mode bifurcates, either lase or absorb
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FEM Simulation
42

• Each mode has separate EP

0 5 10 15 20
-6

-3

0

3

6
 TE0
 TE1

Im
(β

) (
cm

-1
)

Gain (cm-1)

Gain=Loss



Learning with Purpose

FEM Simulation
43

• Each mode has separate EP
• Single mode operation window 5 to 15 cm-1
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Device Fabrication
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Electroluminescence and L-I
45

• The gain (loss) current is 400 (0 to 120) mA pulsed 
current of 1% duty cycle and 1 (10) µs pulse width 

• The loss current always keeps below Ith

• Jth remains stable
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Near- and Far- Field Characteristics
46

• A trend of miltisinglemulti modes is observed 
which very well matches simulation

Phase Diagram
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Summary
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• InAs Quantum Dot laser and SLEDs is an 
ideal candidate for integrations

• PT Symmetry is a novel concept for high-
power laser applications

• Packaging is an alternative for 
integrations
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Optimization of InAs QDs

• InAs QDs grown on offcut GaAs substrates show improved PL 
intensity and improved dot uniformity

51

Guo et. al. Journal of Crystal Growth 451 (2016) 79–82 
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Optimization of InAs QDs

• The thickness and III-V ratio of the LT GaAs layer is playing a 
critical role of the dot performance

52

Guo et. al., Journal of Vacuum Science & Technology B, 34(4), 041223, (2016) 
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Chirped QDs with InAlAs SRLs

• By changing the SRL design, the GS and ES emission 
wavelengths can be tuned

53
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Lasing Condition
54

mith ααg +=









==−=
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• Hard to maintain gain=loss all the time
• Gain is clamped 
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Fix Gain and Tune Loss
55

Gain 𝜺𝜺𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊

Loss

𝜺𝜺𝒓𝒓𝒊𝒊𝒊𝒊𝒓𝒓
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Mode Selection in PT Laser
56

• Region III & IV is the single Transverse-mode 
operation window

• TE1 is not observable until into region V
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FEM Simulation
57
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Coupled Waveguide Theory
58

𝑑𝑑𝑎𝑎𝑚𝑚
𝑑𝑑𝑧𝑧

= 𝑖𝑖𝛽𝛽𝑚𝑚𝑎𝑎𝑚𝑚+𝑖𝑖𝜅𝜅𝑚𝑚𝑏𝑏𝑚𝑚+𝑔𝑔𝑚𝑚𝑎𝑎𝑚𝑚

𝑑𝑑𝑏𝑏𝑚𝑚
𝑑𝑑𝑧𝑧

= 𝑖𝑖𝛽𝛽𝑚𝑚𝑏𝑏𝑚𝑚+𝑖𝑖𝜅𝜅𝑚𝑚𝑎𝑎𝑚𝑚+𝑔𝑔𝑚𝑚𝑏𝑏𝑚𝑚

• 𝜌𝜌𝑚𝑚 < 1, 𝛽𝛽𝑚𝑚 is real, PT is not broken 
• 𝜌𝜌𝑚𝑚 > 1, , 𝛽𝛽𝑚𝑚 is complex, PT is 

spontaneously broken

𝜌𝜌𝑚𝑚 =
𝑔𝑔𝑚𝑚
𝜅𝜅𝑚𝑚
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Coupled Waveguide Theory
59

𝑑𝑑𝑎𝑎𝑚𝑚
𝑑𝑑𝑧𝑧

= 𝑖𝑖𝛽𝛽𝑚𝑚𝑎𝑎𝑚𝑚+𝑖𝑖𝜅𝜅𝑚𝑚𝑏𝑏𝑚𝑚+𝑔𝑔𝑚𝑚𝑎𝑎𝑚𝑚

𝑑𝑑𝑏𝑏𝑚𝑚
𝑑𝑑𝑧𝑧

= 𝑖𝑖𝛽𝛽𝑚𝑚𝑏𝑏𝑚𝑚+𝑖𝑖𝜅𝜅𝑚𝑚𝑎𝑎𝑚𝑚+𝑔𝑔𝑚𝑚𝑏𝑏𝑚𝑚

• 𝜌𝜌𝑚𝑚 < 1, 𝛽𝛽𝑚𝑚 is real. PT is not broken. 
• 𝜌𝜌𝑚𝑚 > 1, , 𝛽𝛽𝑚𝑚 is complex. PT is 

spontaneously broken. 

• 𝜅𝜅𝑚𝑚 increases with m. 

𝜌𝜌𝑚𝑚 =
𝑔𝑔𝑚𝑚
𝜅𝜅𝑚𝑚

Single mode 
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Device Fabrication
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Electroluminescence and L-I
61

• The gain (loss) current is 400 (0 to 120) mA pulsed 
current of 1% duty cycle and 1 (10) µs pulse width 

• The loss current always keeps below Ith

• Jth remains stable
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Near- and Far- Field Setup
62

• Schematic of near-field measurement

• Schematic of far-field measurement

PT symmetric 
laser

Beam Profiler

Near Infrared CameraFocus Lens

PT symmetric 
laser
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