

Integration of III-V Quantum Dot Lasers and Their Advanced Applications

Dr. Wei Guo

Photonics Research Laboratory Department of Physics and Applied Physics University of Massachusetts Lowell, Lowell, MA

Photonics Research Lab

Epitaxy tool

Fabrication facility

Characterization

Learning with Purpose

Outline

- InAs quantum dot laser integration for optical interconnections
- Quantum Dot broadband SLEDs for optical coherent tomography
- QD PT symmetry and topological laser
- Summary

Outline

- InAs quantum dot laser integration for optical interconnections
- Quantum Dot broadband SLEDs for optical coherent tomography
- QD PT symmetry and topological laser
- Summary

Optical Interconnection

Optical Interconnection

Integrated Optical Transceiver

Volume SiPh **Cost Integration**

• Silicon photonics is an ideal candidate for optical interconnections

Integrated Optical Transceiver

- Parallel channels are key to scaling bandwidth at low cost
- Silicon photonics passive components have been intensively studied
- Hybrid III-V lasers are still the challenges

QD Lasers on Silicon

InAs QD Lasers

- Integration of InP based QW lasers on Si was the focus
- Quantum dot lasers are advantages with the high temperature stability and have drawn large attentions recently

MBE Growth of InAs QD

As pressure= 8×10^{-6} Torr T_{Growth} (GaAs)= 600° C T_{Growth} (InAs)= 500° C InAs QDs ~ 2.6 ML III: V Ratio= 1:15 Growth rate (InAs)= 0.1ML/s

Growth rate (GaAs)=1ML/s

MBE Growth of InAs QD

- Optimized InAs QDs with density of 8x10¹⁰ cm⁻² is achieved
- PL measurements are employed during the QD optimization

Wafer Bonding

- Alignment Free
- No Dislocation and Threading Defaults
- Lower Cost
- Compatible with Si CMOS Integration

Dislocation in Si\GaAs interface

- Low resistivity
- 0.1Ω/cm²
- Low Bonding Temperature 250 °C
- Excellent thermal contact

GaAs die bonded to Si

12 _____

0.10

QD Laser on Si by Pd-Mediated Wafer Bonding

Characterizations of QD Lasers on Si

- State-of-the-art hybrid InAs QD lasers on Silicon is achieved
- Laser exhibit operation at 100°C

Butt-Joint Coupled Platform

- In butt-joint coupling platform, the edge emitting laser emission is directly aligned with the silicon waveguide input port
- The laser and silicon chips were mount on translation stages
- The alignment was achieved by maximizing the output power

Butt-Joint Coupled Platform

16

Light coupled from QDs Laser

Si ring resonator on SOI Substrate

Light coupled from SOI waveguide to Fiber

- QD laser is successfully couple in Si
- Si ring resonators can filter the comb laser emission

Outline

- InAs quantum dot laser integration for optical interconnections
- Quantum Dot broadband SLEDs for optical coherent tomography
- QD PT symmetry and topological laser
- Summary

Broadband Laser

The performance of an OCT system is largely determined by the broadband source

Optical Coherence Tomography (OCT) of a sarcoma (skin cancer)

"Ss-oct" by Pumpkinegan at en.wikipedia. https://commons.wikimedia.org/wiki/File:Ss-oct.PNG#/media/File:Ss-oct.PNG

Quantum Dots are a good candidate due to having:

- Emission from 1.0 to 1.3 µm
- Broadband

19

Long Coherence length -> B-scan resolution

-> A-scan resolution ($\Delta Z=0.44 \cdot \lambda_0^2 / \Delta \lambda$)

- Grown on GaAs substrates for DBR integration

- Ha et. al., ELECTRONICS LETTERS Vol. 49 No. 19 pp. 1205-1206
- Thorlabs Inc.

Quantum Dots are a good candidate due to having:

- Emission from 1.0 to 1.3 µm
- **Broadband**

20

- Long Coherence length -> B-scan resolution
- A-scan resolution ($\Delta Z=0.44 \cdot \lambda_0^2 / \Delta \lambda$)
- Grown on GaAs substrates for DBR integration

->

- Ha et. al., ELECTRONICS LETTERS Vol. 49 No. 19 pp. 1205-1206
- Thorlabs Inc.

Quantum Dots are a good candidate due to having:

- Emission from 1.0 to 1.3 µm
- Broadband

21

Long Coherence length -> B-scan resolution

-> A-scan resolution ($\Delta Z=0.44 \cdot \lambda_0^2 / \Delta \lambda$)

Grown on GaAs substrates for DBR integration

- Ha et. al., ELECTRONICS LETTERS Vol. 49 No. 19 pp. 1205-1206
- Thorlabs Inc.

Quantum Dots are a good candidate due to having:

- Emission from 1.0 to 1.3 µm
- Broadband -> A-scan resolution ($\Delta Z=0.44\cdot\lambda_0^2/\Delta\lambda$)
- Long Coherence length -> B-scan resolution

A-scan resolution $(\Delta Z=0.44 \cdot \Lambda_0^2 / \Delta \Lambda)$ B-scan resolution

Grown on GaAs substrates for DBR integration

- Ha et. al., ELECTRONICS LETTERS Vol. 49 No. 19 pp. 1205–1206
- Thorlabs Inc.

Quantum Dots are a good candidate due to having:

- Emission from 1.0 to 1.3 μm
- Broadband
- Long Coherence length ->
- A-scan resolution ($\Delta Z=0.44 \cdot \lambda_0^2 / \Delta \lambda$)
 - **B-scan resolution**
- Grown on GaAs substrates for DBR integration

->

- Ha et. al., ELECTRONICS LETTERS Vol. 49 No. 19 pp. 1205–1206
- Thorlabs Inc.

Learning with Purpose

Dip-free Broadband QDs

 Different QD structures can be grown together to eliminate the spectrum dip

Learning with Purpose

Dip-free Broadband QDs

 Different QD structures can be grown together to eliminate the spectrum dip

Chirped QDs with InAlAs SRLs

• By using the novel QD structures, the ground and excited state emission can be separated in the mixed QD structures

Chirped QDs with InAIAs SRLs

wavelengths can be tuned

Chirped QDs with InAlAs SRLs

 By changing the SRL design, the GS and ES emission wavelengths can be tuned

Learning with Purpose

QD SLEDs/Gain Chip

 By changing the SRL design, the GS and ES emission wavelengths can be tuned

Broadband QD External Cavity Laser

 QD external cavity laser is setup by using the wavelength selective diffraction grating

Broadband QD External Cavity Laser

 QD external cavity laser is setup by using the wavelength selective diffraction grating

Outline

- InAs quantum dot laser integration for optical interconnections
- Quantum Dot broadband SLEDs for optical coherent tomography
- QD PT symmetry and topological laser

Parity-time Symmetry in Quantum Mechanics

From Quantum Mechanics to Optics

Maxwell Equation in 2D waveguide

$$\nabla^2 \varphi + k_0^2 \varepsilon(x, y) \varphi = \beta^2 \varphi$$

Schrödinger Equation

$$\nabla^2 \psi - \frac{2mV(x,y)}{\hbar^2}\psi = -\frac{2mE}{\hbar^2}\psi$$

Learning with Purpose

PT Symmetric Optics

PT Symmetric Optics

Learning with Purpose

What Can PT Symmetric Optics Do?

H.Hoedai, Science, Vol346 6212 (2010).L. Feng et. al., Science, Vol 346, (2014).A. Regensburger et. al., Nature. 488, (2012).

High Power Laser Application

Xerographic printing

Optical data storage

Communication

Laser-induced nuclear fusion

Mode Filtering

- Tapered Area to amplify fundamental mode alone
- Spatial filter to increase the loss of higher order modes
- Higher order modes occur in high pumping level

Learning with Purpose https://www.photonics.com/EDU/Handbook.aspx?AID=25099 S.Wolff. Et. al., OE, Vol 5, No 3 (1999)

- Active region dimension:
 - Thickness=300 nm
 - ➢ Width=60 µm

Device Fabrication

Electroluminescence and L-I

- The gain (loss) current is 400 (0 to 120) mA pulsed current of 1% duty cycle and 1 (10) µs pulse width
- The loss current always keeps below I_{th}
- J_{th} remains stable

Near- and Far- Field Characteristics

- InAs Quantum Dot laser and SLEDs is an ideal candidate for integrations
- PT Symmetry is a novel concept for highpower laser applications
- Packaging is an alternative for integrations

Acknowledgement

Current Members:

- Prof. Zhao Hong (visiting professor, Qiqihaer University)
- Prof. Yuanyu Wang (visiting professor, Taiyuan University of Technology)
- Ruizhe Yao (PhD)
- Hang Li (PhD)
- Johnson Silverio (B.S)

Collaborators:

- Prof. Viktor Podolskiy (UML)
- Prof. Hualiang Zhang (UML)
- Prof. Stefan Preble (RIT)
- Prof. Xuejun Lu (UML)

Acknowledgement

Current Members:

- Prof. Zhao Hong (visiting professor, Qiqihaer University)
- Prof. Yuanyu Wang (visiting professor, Taiyuan University of Technology)
- Ruizhe Yao (PhD) looking for a job!
- Hang Li (PhD)
- Johnson Silverio (B.S)

Collaborators:

- Prof. Viktor Podolskiy (UML)
- Prof. Hualiang Zhang (UML)
- Prof. Stefan Preble (RIT)
- Prof. Xuejun Lu (UML)

UMASS

Ruizhe_yao@student.uml.edu

Acknowledgement

- Work was done CRF at UMass Lowell
- Work was supported by NSF under grant No. ECCS-1309230 and commonwealth of Massachusetts

Optimization of InAs QDs

InAs QDs grown on offcut GaAs substrates show improved PL intensity and improved dot uniformity

Guo et. al. Journal of Crystal Growth 451 (2016) 79-82

Optimization of InAs QDs

 The thickness and III-V ratio of the LT GaAs layer is playing a critical role of the dot performance

Guo et. al., Journal of Vacuum Science & Technology B, 34(4), 041223, (2016)

Chirped QDs with InAlAs SRLs

 By changing the SRL design, the GS and ES emission wavelengths can be tuned

Lasing Condition

$$g_{th} = \overline{\alpha}_i + \overline{\alpha}_m$$

$$g_{net} = g_{th} - \overline{\alpha}_i = \overline{\alpha}_m = \frac{1}{2L} \ln \left(\frac{1}{R_1 R_2} \right)$$

- Hard to maintain gain=loss all the time
- Gain is clamped

Learning with Purpose

Fix Gain and Tune Loss

Mode Selection in PT Laser

- Region III & IV is the single Transverse-mode operation window
- TE₁ is not observable until into region V

Learning with Purpose

Coupled Waveguide Theory

$$\frac{da_m}{dz} = i\beta_m a_m + i\kappa_m b_m + g_m a_m$$

$$\frac{db_m}{dz} = i\beta_m b_m + i\kappa_m a_m + g_m b_m$$

$$\rho_m = \frac{g_m}{\kappa_m}$$

- $\rho_m < 1$, β_m is real, PT is not broken
- $\rho_m > 1$, β_m is complex, PT is spontaneously broken

Learning with Purpose

Coupled Waveguide Theory

• κ_m increases with m.

Device Fabrication

Electroluminescence and L-I

- The gain (loss) current is 400 (0 to 120) mA pulsed current of 1% duty cycle and 1 (10) µs pulse width
- The loss current always keeps below I_{th}
- J_{th} remains stable

Near- and Far- Field Setup

